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Abstract

We introduce a straightforward yet effective method to break down
transformer outputs into individual components. By treating the model’s
non-linear activations as constants, we can decompose the output in a lin-
ear fashion, expressing it as a sum of contributions. These contributions
can be easily calculated using linear projections. We call this approach
“logit prisms” and apply it to analyze the residual streams, attention lay-
ers, and MLP layers within transformer models. Through two illustrative
examples, we demonstrate how these prisms provide valuable insights into
the inner workings of the gemma-2b model.

1 Introduction
The logit lens (nostalgebraist, 2020) is a simple yet powerful tool for under-
standing how transformer models (Brown et al., 2020; Vaswani et al., 2017)
make decisions. In this work, we extend the logit lens approach in a mathe-
matically rigorous and effective way. By treating certain parts of the network
activations as constants, we can leverage the linear properties within the net-
work to break down the logit output into individual component contributions.
Using this principle, we introduce simple “prisms” for the residual stream, at-
tention layers, and MLP layers. These prisms allow us to calculate how much
each component contributes to the final logit output.

Our approach can be thought of as applying a series of prisms to the transformer
network. Each prism in the sequence splits the logits from the previous prism
into separate components. This enables us to see how different parts of the
model—such as attention heads, MLP neurons, or input embeddings—influence
the final output.

To showcase the power of our method, we present two illustrative examples:

• In the first example, we examine how the gemma-2b model performs the
simple factual retrieval task of retrieving a capital city from a country
name. Our findings suggest that the model learns to encode information
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about country names and their capital cities in a way that allows the net-
work to easily convert country embeddings into capital city unembeddings
through a linear projection.

• The second example explores how the gemma-2b model adds two small
numbers (ranging from 1 to 9). We uncover interesting insights into the
workings of MLP layers. The network predicts output numbers using
interpretable templates learned by MLP neurons. When multiple neurons
are activated simultaneously, their predictions interfere with each other,
ultimately producing a final prediction that peaks at the correct number.

2 Method

Figure 1: A typical decoder-only transformer network where the residual stream
is iteratively refined by a sequence of attention and MLP layers. There are
five main components: the input embedding (Embed), the normalization layers
(Norm), the Attention layers, the MLP layers, and the unembedding layer (Un-
embed).

We introduce simple “prisms” that allow us to break down the output of trans-
former networks into individual components. The key idea is to treat nonlinear
activations as constants, which enables us to calculate the contribution of any
component in the network using a series of linear transformations. In the fol-
lowing subsections, we explore this approach in more detail.

2.1 Residual Stream Decomposition
In a typical decoder-only transformer architecture (see Figure 1), the output
logit can be expressed as:

logits = 𝑊unembed ⋅ diag (𝑤norm) ⋅ 𝑤embed + ∑𝑁
𝑖=1(𝑎𝑖 + 𝑚𝑖)
𝑠

Here, 𝑊unembed ∈ ℝ𝑉 ×𝑑 is the unembedding matrix, 𝑤embed is the token em-
bedding vector, 𝑎𝑖 and 𝑚𝑖 denote the attention and MLP outputs at 𝑖-th layer
respectively, 𝑠 is a normalization factor (usually the root mean square of the
denominator), and 𝑤norm is the scaling vector of the last normalization layer.

By treating 𝑠 as a constant, we can break down the logits into individual terms
for each embed, attention and MLP layer:

logits = 𝑃 ⋅ 𝑤embed + 𝑃 ⋅ 𝑎1 + 𝑃 ⋅ 𝑚1 + ⋯ + 𝑃 ⋅ 𝑎𝑁 + 𝑃 ⋅ 𝑚𝑁
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where 𝑃 is the projection matrix:

𝑃 = 𝑊unembed ⋅ diag (𝑤norm) ⋅ (𝑠−1𝐼)

Each term, like 𝑃 ⋅𝑎1, represents the individual contribution of the corresponding
residual vector (𝑎1) to the final logit score. The cumulative sum 𝑃 ⋅ 𝑤embed +
∑ℓ

𝑖=1 𝑃 ⋅ (𝑎𝑖 + 𝑚𝑖) gives the model’s logit score up to layer ℓ.

2.2 Attention Decomposition
We can naturally break down the attention output into a sum over its attention
heads:

𝑎ℓ =
#heads

∑
𝑖=1

𝐻𝑖
ℓ

Here, 𝐻𝑖
ℓ is the 𝑖-th attention head’s output at layer ℓ. Additionally, an attention

head’s output is a weighted sum of the 𝑂𝑉 circuit outputs for each token in the
sequence.1 The attention output at layer ℓ is:

𝐻𝑖
ℓ = ∑

𝑝
𝛼𝑝 ⋅ 𝑂𝑉 𝑖

ℓ ⋅ diag (𝑤norm) ⋅ ℎ𝑝
ℓ−1

𝑠𝑝
ℓ−1

In this formula, 𝛼𝑝 is the attention weight from the current token to the previous
token 𝑝. 𝑂𝑉 𝑖

ℓ is the OV matrix for the 𝑖-th attention head at layer ℓ. ℎ𝑝
ℓ−1 is the

hidden state of token 𝑝 from the previous layer ℓ − 1. Finally, 𝑠𝑝
ℓ−1 represents

the normalization factor.

By treating the attention weight 𝛼𝑝 and normalization factor 𝑠𝑝
ℓ−1 as constants,

we can express the attention output as a sum of linear projections of the previous
layer’s hidden state ℎ𝑝

ℓ−1. To find the contribution of token 𝑝 via attention head
𝑖, we use the following projection matrix:

𝑃 𝑎𝑖
ℓ = 𝑃 ⋅ (𝛼𝑝𝐼) ⋅ 𝑂𝑉 𝑖

ℓ ⋅ diag (𝑤norm) ⋅ (𝑠𝑝
ℓ−1

−1𝐼)

Note that we can further decompose ℎ𝑝
ℓ−1 into the sum of the token embedding

and all previous layers’ residual outputs using residual stream decomposition.

2.3 MLP Decomposition
In transformer networks, the MLP layers consist of two linear transformations,
𝑊up and 𝑊down, with a non-linear function 𝑔 applied between them. The output
of an MLP layer ℓ can be expressed as:

𝑚ℓ = 𝑊down ⋅ 𝑔 ⋅ 𝑊up ⋅ diag (𝑤norm) ⋅ ℎ𝑎
ℓ

𝑠𝑎
ℓ

1The 𝑂𝑉 circuit has two matrices: 𝑉 reads from the residual stream, and 𝑂 writes to it.
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Here, ℎ𝑎
ℓ is the hidden state from the previous attention layer, 𝑤norm is a scaling

vector, and 𝑠𝑎
ℓ is a normalization factor.

The nonlinear point-wise function 𝑔 allows neural networks to learn complex
transformations that cannot be represented by linear transformations. Here, we
refer to the input dimensions of 𝑔 as neurons. We can break down the MLP
output 𝑚ℓ into a sum over individual neuron contributions:

𝑚ℓ =
#neurons

∑
𝑖=1

diag (𝑊 𝑖
down) ⋅ 𝑔𝑖 ⋅ diag (𝑊 𝑖

up) ⋅ diag (𝑤norm) ⋅ ℎ𝑎
ℓ

𝑠𝑎
ℓ

To compute the contribution of the 𝑖-th neuron in MLP layer ℓ to the logit
output, we can treat 𝑔 and 𝑠𝑎

ℓ as constants and use following projection matrix:

𝑃 𝑚𝑖
ℓ = 𝑃 ⋅ diag (𝑊 𝑖

down) ⋅ (𝑔𝑖𝐼) ⋅ diag (𝑊 𝑖
up) ⋅ diag (𝑤norm) ⋅ ((𝑠𝑎

ℓ )−1 𝐼)

Using this projection matrix, we can pinpoint how much a single MLP neuron
contributes to the model’s final output logits. Additionally, the same projection
matrix allows us to trace how residual vectors from earlier layers influence the
final output logits through that specific neuron via the residual stream decom-
position.

3 Examples
In this section, we apply the prisms proposed earlier to explore how the
gemma-2b model works internally in two examples. We use the gemma-2b
model because it’s small enough to run on a standard PC without a dedicated
GPU.

Retrieving capital city. First, let’s see how the model retrieves factual infor-
mation to answer this simple question:

The capital city of France is ___

The model correctly predicts �Paris as the most likely next token. To under-
stand how it arrives at this prediction, we’ll use the prisms from the previous
section.

We start by using the residual prism to plot how much each layer contributes to
the logit output for several candidate tokens (different capital cities). Compar-
ing the prediction logit of the right answer to reasonable alternatives can reveal
important information about the network’s decision process.

Figure 2 shows each layer’s logit contribution for multiple candidate tokens.
Some strong signals stand out, with large positive and negative contributions
in the first and last layers. These likely mean these layers play key roles in the
model’s predictions. Interestingly, there’s a strong positive contribution at the
start, followed by an equally strong negative contribution in the next layer (the
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first attention output). This might be because the gemma-2b model’s embedding
and unembedding vectors are the same. So the input token strongly predicts
itself as the output (due to the nature of the dot product operation). The
network has to balance this out with a strong negative contribution in the next
layer.

Figure 2 B zooms in to compare logit contributions at each layer for different
targets. The 𝑎15 contribution stands out between �Paris and other candidates.
At this layer, the attention output aligns much more with the unembedding
vector of �Paris than other candidates.
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Figure 2: Logit contribution of each layer for different target tokens. Figure A
shows the contributions of all layers, while Figure B zooms in on the contribution
of the last layers.

We think 𝑎15 reads the correct output value from somewhere else via the atten-
tion mechanism, so we use the attention prism to decompose 𝑎15 into smaller
pieces. Figure 3 shows how much each input token influences the output logits
via the attention layer 15. The �France token heavily affects the output through
attention head 6 of the layer, which makes very much sense as �France should
somehow inform the network to output the correct capital city.
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Figure 3: Logit contribution of each input token through attention heads at
layer 15.

Next, we again use the residual prism to decompose the attention head 6 logits
into smaller pieces. Figure 4 shows how the residual outputs from all previous
layers at the �France token contribute to the output logit via attention head 6.
Interestingly, the �France embedding vector contributes the most to the output
logit. This indicates that the embedding vector of �France somehow already
includes the information about its capital city, and this information can be read
easily by attention head 6.
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The capital city of France is ___

Figure 4: Logit contribution of all residual outputs through attention head 6 at
layer 15.
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One direct result of using prisms is that we have a linear projection that maps the
�France embedding vector to capital city candidates’ unembedding vectors. We
think this linear projection is meaningful not just for �France, but has similar
effects on other country tokens too. To check this hypothesis, we apply the
same projection matrix to other countries’ embedding vectors. Figure 5 shows
the same matrix does indeed project other country names to their respective
capitals.

This suggests that the network learns to represent country names and capital
city names in such a way that it can easily transform a country embedding to
the capital city unembedding using a linear projection. We hypothesize that
this observation can be generalized to other relations encoded by the network
as well.
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Figure 5: Linear projection from country embedding to capital city’s logit.

Digit addition. Let’s explore how gemma-2b performs arithmetic by asking it
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to complete the following:

7+2=_

The model correctly predicts 9 as the next token. To understand how it achieves
this, we employ our prisms toolbox. First, using the residual prism, we decom-
pose the residual stream and examine the contributions of different layers for
target tokens ranging from 0 to 9 (Figure 6). The MLP layer at layer 16 (m16)
stands out, predicting 9 with a significantly higher logit value than other candi-
dates. This substantial gap is unique to m16, indicating its crucial role in the
model’s prediction of 9.
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Figure 6: Contributions of different layers to the logit outputs of different can-
didates (from 0 to 9) using the residual prism.

Next, we use the MLP prism to identify which neurons in m16 drive this be-
havior. Decomposing m16 into contributions from its 16,384 neurons, we find
that most are inactive. Extracting the top active neurons, we observe that they
account for the majority of m16’s activity. Figure 7 shows these top neurons’
contributions to candidates from 0 to 9, revealing distinct patterns for each
neuron. For example, neuron 10029 selectively differentiates odd and even num-
bers. Neuron 11042 selectively predicts 7, while neuron 12552 selectively avoids
predicting 7. Neurons 15156 and 2363 show sine-wave patterns. While no single
neuron dominantly predicts 9, the combined effect of these neurons’ predictions
peaks at 9.
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Figure 7: Top neuron contributions for different targets ranging from 0 to 9.

Note that the neurons’ contributions to the target logits are simply linear pro-
jections onto different target token unembedding vectors. The neuron activity
patterns in Figure 7 are likely encoded in the target token unembeddings; as
such, these patterns can be easily extracted using a linear projection. When
we visualize the digit unembedding space in 2D (Figure 8), we discover that
the numbers form a heart-like shape with reflectional symmetry around the 0-5
axis.
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Figure 8: 2D projection of digit unembedding vectors. The embeddings are
projected to 2D space using PCA. Each point represents a digit, and the points
are connected in numerical order.

Our hypothesis is that transformer networks encode templates for outputs in
the unembedding space. The MLP layer then selectively reads these templates
based on their linear projection 𝑊down. By triggering a specific combination
of neurons, each representing a template, the network ensures the logits reach
their maximum value for the tokens with the highest probability.

4 Related Work
Our work builds upon and is inspired by several previous works. The logit lens
method (nostalgebraist, 2020) is closely related, allowing exploration of the resid-
ual stream in transformer networks by treating middle layer hidden states as the
final layer output. This provides insights into how transformers iteratively re-
fine their predictions. The author posits that decoder-only transformers operate
mainly in a predictive space.

The tuned lens method (Belrose et al., 2023) improves upon the logit lens ap-
proach by addressing issues such as biased estimates and not working as well
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with some model families. Their key innovation is adding learnable parameters
when reading logits from intermediate layers.

The path expansion trick used by (Elhage et al., 2021) decomposes one- and
two-layer transformers into sums of different computation paths. Our approach
is similar but treats each component independently to avoid combinatorial ex-
plosion in larger networks.

(Wang et al., 2022) examines GPT-2 circuits for the Indirect Object Identifica-
tion task, using the last hidden state norm to determine each layer’s contribution
to the output, similar to our residual prism. Their analysis of the difference in
logits between candidates is, in fact, very similar to our candidate comparison.

Our findings in the example section align with previous research in several ways.
(Mikolov et al., 2013) demonstrate that their Word2vec technique captures rela-
tionships between entities, such as countries and their capital cities, as directions
in the embedding space. They show that this holds true for various types of
relationships. This aligns with our observation of how the gemma-2b model
represents country embeddings and capital city unembeddings.

Numerous studies (Mirzadeh et al., 2023; Zhang et al., 2021, 2024) have em-
pirically observed sparse activations in MLP neurons, which is consistent with
our MLP analysis. However, the primary focus of these works is on leveraging
the sparsity to accelerate model inference rather than interpreting the model’s
behavior.

(Geva et al., 2021) suggest that MLP layers in transformer networks act as key-
value memories, where the 𝑊up matrix (the key) detects input patterns and
the 𝑊down matrix (the value) boosts the likelihood of tokens expected to come
after the input pattern. In our examples, we show that MLP neurons can learn
understandable output templates for digit tokens. (Nanda et al., 2023) study
how a simple 1-layer transformer network carries out modular addition task.
They discover that the network’s MLP neurons use constructive interference of
multiple output templates to shape the output distribution, making it peak at
the right answer.

5 Conclusion
This paper introduces logit prisms, a simple but effective way to break down
transformer outputs, making them easier to interpret. With logit prisms, we can
closely examine how the input embeddings, attention heads, and MLP neurons
each contribute to the final output. Applying logit prisms to the gemma-2b
model reveals valuable insights into how it works internally.
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